Integrated Phoneme Subspace Method for Speech Feature Extraction
نویسندگان
چکیده
Speech feature extraction has been a key focus in robust speech recognition research. In this work, we discuss data-driven linear feature transformations applied to feature vectors in the logarithmic mel-frequency filter bank domain. Transformations are based on principal component analysis (PCA), independent component analysis (ICA), and linear discriminant analysis (LDA). Furthermore, this paper introduces a new feature extraction technique that collects the correlation information among phoneme subspaces and reconstructs feature space for representing phonemic information efficiently. The proposed speech feature vector is generated by projecting an observed vector onto an integrated phoneme subspace (IPS) based on PCA or ICA. The performance of the new feature was evaluated for isolated word speech recognition. The proposed method provided higher recognition accuracy than conventional methods in clean and reverberant environments.
منابع مشابه
Phoneme Classification Using Temporal Tracking of Speech Clusters in Spectro-temporal Domain
This article presents a new feature extraction technique based on the temporal tracking of clusters in spectro-temporal features space. In the proposed method, auditory cortical outputs were clustered. The attributes of speech clusters were extracted as secondary features. However, the shape and position of speech clusters change during the time. The clusters temporally tracked and temporal tra...
متن کاملSpeaker Independent Isolated Tamil Words for Speech Recognition using MFCC, IPS and HMM
The process of converting an acoustic waveform into the text resembling the information, conveyed by the speaker is termed as speech recognition. Nowadays, normally Hidden Markov Model (HMM) based speech recognizer with Mel Frequency Cepstral Coefficient (MFCC) feature extraction is used. The proposed speech feature vector is generated by projecting an observed vector onto an Integrated Phoneme...
متن کاملFeature Extraction and Dimensionality Reduction using IPS for Isolated Tamil Words Speech Recognizer
Automatic Speech Recognition (ASR), is the process of converting a speech waveform into the text quite similar to the information being communicated by the speaker. This paper aims to construct a speech recognition system for Tamil language. Mel Frequency Cepstral Coefficients (MFCC) is a commonly used feature extraction technique for speech recognition which is computed by applying DCT to the ...
متن کاملبهبود عملکرد سیستم بازشناسی گفتار پیوسته بوسیله ویژگیهای استخراج شده از مانیفولدهای گفتاری در فضای بازسازی شده فاز
The design for new feature extraction methods out of the speech signal and combination of their obtained information is one of the most effective approaches to improve the performance of automatic speech recognition (ASR) system. Recent researches have been shown that the speech signal contains nonlinear and chaotic properties, but the effects of these properties are not used in the continuous ...
متن کاملImproving Phoneme Sequence Recognition using Phoneme Duration Information in DNN-HSMM
Improving phoneme recognition has attracted the attention of many researchers due to its applications in various fields of speech processing. Recent research achievements show that using deep neural network (DNN) in speech recognition systems significantly improves the performance of these systems. There are two phases in DNN-based phoneme recognition systems including training and testing. Mos...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- EURASIP J. Audio, Speech and Music Processing
دوره 2009 شماره
صفحات -
تاریخ انتشار 2009